Let #cos^(-1)(5/13)=x# then
#rarrcosx=5/13#
#rarrsinx=sqrt(1-cos^2x)=sqrt(1-(5/13)^2)=12/13#
#rarrx=sin^(-1)(12/13)=cos^(-1)(5/13)#
Also, let #tan^(-1)(3/4)=y# then
#rarrtany=3/4#
#rarrsiny=1/cscy=1/sqrt(1+cot^2y)=1/sqrt(1+(4/3)^2)=3/5#
#rarry=tan^(-1)(3/4)=sin^(-1)(3/5)#
#rarrcos^(-1)(5/13)+ tan^(-1)(3/4)#
#=sin^(-1)(12/13)+sin^(-1)(3/5)#
#=sin^(-1)(12/13*sqrt(1-(3/5)^2)+3/5*sqrt(1-(12/13)^2))#
#=sin^(-1)(12/13*4/5+3/5*5/13)=63/65#
Now, #sin(cos^(-1)(5/13)+ tan^(-1)(3/4))#
#=sin(sin^(-1)(63/65))=63/65#