How do you calculate #tan(arccos(-9/10))#?

1 Answer
May 1, 2015

In this way.

We have to calculate #tanalpha#, where alpha is:

#alpha=arccos(-9/10)#.

Since the range of the function #y=arccosx# is #[0,pi]# and the value negative #-9/10#, the angle is in the second quadrant, in which the sinus is positive. So:

#cosalpha=-9/10#,

#sinalpha=+sqrt(1-cos^2alpha)=+sqrt(1-81/100)=sqrt19/10#.

Than:

#tanalpha=sinalpha/cosalpha=(sqrt19/10)/(-9/10)=-sqrt19/10*10/9=#

#=-sqrt19/9#.