How do you change (0,3,-3) from rectangular to spherical coordinates?

1 Answer
Feb 3, 2015

The answer is: #(3sqrt2,pi/2,3/4pi)#.

To change the coordinates from rectangular to spherical we have to use these formulae:

#rho=sqrt(x^2+y^2+z^2)#;
#phi=arctan(y/x)#;
#theta=arccos(z/sqrt(x^2+y^2+z^2))#.

So:

#rho=sqrt(0^2+3^2+3^2)=sqrt18=3sqrt2#;

#phi=arctan(3/0)=arctan(oo)=pi/2#;

#theta=arccos((-3)/sqrt(0^2+3^2+3^2))=arccos(-3/(3sqrt2))=arccos(-1/sqrt2*sqrt2/sqrt2)=arccos(-sqrt2/2)=3/4pi#.

So the point becomes: #(3sqrt2,pi/2,3/4pi)#.