How do you change 2sin7xcos4x into a sum?

1 Answer
May 23, 2018

sin 11x + sin 3x

Explanation:

f(x)=2cos4x.sin7x
Note that sin7x=cos(π27x) (complementary arcs)
f(x)=2cos4x.cos(π27x)
Reminder of trig identity:
2cosa.cosb=cos(ab)+cos(a+b)
In this case:
ab=4x(π27x)=11xπ2
a+b=4x+π27x=π23x
f(x)=cos(11xπ2)+cos(π23x)=cos(π211x)+sin3x
f(x)=sin11x+sin3x (complementary arcs)