How do you change the polar equation r(1+costheta)=1 into rectangular form?

2 Answers
Jan 27, 2017

The equation is y^2=1-2x

Explanation:

To change from polar coordinates (r,theta) to rectangular coordinates, we use the following equations

x=rcostheta

y=rsintheta

r^2=x^2+y^2

Therefore,

r(1+costheta)=1

r+rcostheta=1

sqrt(x^2+y^2)+x=1

sqrt(x^2+y^2)=1-x

Squaring both sides

cancelx^2+y^2=1-2x+cancelx^2

So,

y^2=1-2x

Jan 27, 2017

"The desired Cartesian Eqn. is "y^2+2x-1=0.

Explanation:

The Formula for converting polar to rectangular form, are as under :

x=rcostheta, y=rsintheta, and, x^2+y^2=r^2.............(star)

"Now, "r(1+costheta)=1 rArr r+rcostheta=1

Using (star), the eqn. becomes

sqrt(x^2+y^2)+x=1 rArr {sqrt(x^2+y^2)}^2=(1-x)^2

rArr x^2+y^2=1-2x+x^2

:. y^2+2x-1=0, is the desired Cartesian Eqn.