How do you change the polar equation r(2+costheta)=1r(2+cosθ)=1 into rectangular form?

1 Answer
Oct 31, 2016

(xsqrt(3)+1/sqrt(3))^2+4y^2-4/3=0(x3+13)2+4y243=0

Explanation:

Giving the pass equations

{(x=rcostheta),(y=rsintheta):}

r(2+costheta)=1 = r(2+x/r)=2r+x=1 then

r = (1-x)/2->x^2+y^2=(1-2x+x^2)/4 and finally

3x^2+4y^2+2x-1=0 or

(xsqrt(3)+1/sqrt(3))^2+4y^2-4/3=0 which is an ellipse.