How do you convert (0, -6)(0,6) to polar form?

2 Answers
Jun 29, 2016

Polar coordinates are (6,-pi/2)(6,π2).

Explanation:

When Cartesian coordinates (x,y)(x,y) are converted into polar coordinates (r,theta)(r,θ), we have the relation

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ and hence

r=sqrt(x^2+y^2)r=x2+y2, costheta=x/rcosθ=xr and sintheta=y/rsinθ=yr.

hence for (0,-6)(0,6)

r=sqrt(0^2+(-6)^2)=sqrt(0+36)=sqrt36=6r=02+(6)2=0+36=36=6

and as costheta=0/6=0cosθ=06=0 and sintheta=-6/6=-1sinθ=66=1,

we have theta=-pi/2θ=π2

Hence polar coordinates are (6,-pi/2)(6,π2).

Jun 29, 2016

Polar conversion is (6,-pi/2).(6,π2).

Explanation:

Cartesian (x,y)(x,y) in polar is (r,theta)(r,θ), where, x=rcostheta, y=rsintheta, theta in(-pi,pi], x^2+y^2=r^2.x=rcosθ,y=rsinθ,θ(π,π],x2+y2=r2.

Clearly, r=6.r=6.

Now x=rcostheta rArr 0=6costheta rArr costheta = 0.x=rcosθ0=6cosθcosθ=0.
y=rsintheta rArr -6=6sintheta rArr sintheta =-1.y=rsinθ6=6sinθsinθ=1.

We conclude that theta=-pi/2.θ=π2.

Hence, polar conversion is (6,-pi/2).(6,π2).