How do you convert (-2,-2)(2,2) into polar form?

1 Answer
Jul 3, 2016

Polar coordinates are (2sqrt2,(5pi)/4)(22,5π4)

Explanation:

If (x,y)(x,y) are Cartesian coordinates and (r,theta)(r,θ) are corresponding polar coordinates, the relation between them is given by x=rcosthetax=rcosθ and y=rsinthetay=rsinθ.

Hence for point (-2,-2)(2,2),

r=sqrt(x^2+y^2)=sqrt((-2)^2+(-2)^2)=sqrt(4+4)=sqrt8=2sqrt2r=x2+y2=(2)2+(2)2=4+4=8=22

and sintheta=costheta=2sqrt2/(-2)=-1/sqrt2sinθ=cosθ=222=12

Hence theta=(5pi)/4θ=5π4

and polar coordinates are (2sqrt2,(5pi)/4)(22,5π4)