How do you convert (-2, -2 sqrt3)(2,23) to polar form?

1 Answer
Jun 8, 2016

(4, (7pi)/6)(4,7π6).

Explanation:

Use (x, y)=(-2, -2sqrt 3)(r cos theta, r sin theta)(x,y)=(2,23)(rcosθ,rsinθ).

r=sqrt(x^2+y^2)=sqrt(4+12)=4r=x2+y2=4+12=4.

cos theta= x/r =-1/2 and sin theta =y/r =-sqrt 3/2cosθ=xr=12andsinθ=yr=32.

Both cosine and sine are negative. So, thetaθ is in the 4th quadrant.

Thus, theta = pi+pi/6θ=π+π6.so that,

sin (pi+pi/6)=-sin (pi/6)= -1/2sin(π+π6)=sin(π6)=12 and

cos (pi+pi/6)=-cos (pi/6)=-sqrt 3/2cos(π+π6)=cos(π6)=32.