How do you convert 2=(-x+2y)^2-y-x2=(x+2y)2yx into polar form?

1 Answer
Feb 11, 2018

r^2(2.5-1.5cos2theta-2sin2theta)-r(sintheta+costheta)-2=0r2(2.51.5cos2θ2sin2θ)r(sinθ+cosθ)2=0

Explanation:

Given:
2=(-x+2y)^2-y-x2=(x+2y)2yx
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ

Now,
2=(-rcostheta+2rsintheta)^2-rsintheta-rcostheta2=(rcosθ+2rsinθ)2rsinθrcosθ

2=r^2(-costheta+2sintheta)^2-r(sintheta+costheta)2=r2(cosθ+2sinθ)2r(sinθ+cosθ)

2=r^2((costheta)^2-2costheta(2sintheta)+(2sintheta)^2)-rsintheta-rcostheta2=r2((cosθ)22cosθ(2sinθ)+(2sinθ)2)rsinθrcosθ

2=r^2cos^2theta-4r^2costhetasintheta+4r^2sin^2theta-rsintheta-rcostheta2=r2cos2θ4r2cosθsinθ+4r2sin2θrsinθrcosθ

2=r^2(1+cos2theta)/2-4r^2(sin2theta)/2+4r^2(1-cos2theta)/2-r(sintheta+costheta)2=r21+cos2θ24r2sin2θ2+4r21cos2θ2r(sinθ+cosθ)

Simplifying further,
2=r^2(0.5+0.5cos2theta-2sin2theta+2-2cos2theta)-r(sintheta+costheta)2=r2(0.5+0.5cos2θ2sin2θ+22cos2θ)r(sinθ+cosθ)

2=r^2(2.5-1.5cos2theta-2sin2theta)-r(sintheta+costheta)2=r2(2.51.5cos2θ2sin2θ)r(sinθ+cosθ)
Or

r^2(2.5-1.5cos2theta-2sin2theta)-r(sintheta+costheta)-2=0r2(2.51.5cos2θ2sin2θ)r(sinθ+cosθ)2=0