How do you convert -2y+1=(x+4)^2+(y-1)^22y+1=(x+4)2+(y1)2 into polar form?

1 Answer
Apr 15, 2016

r^2+8rcostheta+16=0r2+8rcosθ+16=0

Explanation:

-2y+1=x^2+8x+16+y^2-2y+12y+1=x2+8x+16+y22y+1
0=x^2+8x+16+y^2-2y+1+2y-10=x2+8x+16+y22y+1+2y1
0=x^2+8x+16+y^20=x2+8x+16+y2
0=(x^2+y^2)+8x+160=(x2+y2)+8x+16

Use the equations:
x^2+y^2=r^2, x=rcos theta, y=rsin thetax2+y2=r2,x=rcosθ,y=rsinθ

0=r^2+8rcostheta+160=r2+8rcosθ+16