How do you convert 2y= -2x^2+3xy 2y=2x2+3xy into a polar equation?

1 Answer
Sep 25, 2016

Substitute rsin(theta)rsin(θ) for y and rcos(theta)rcos(θ) for x and then do some algebra.

Explanation:

2rsin(theta) = -2(rcos(theta))^2 + 3(rcos(theta))(rsin(theta))2rsin(θ)=2(rcos(θ))2+3(rcos(θ))(rsin(θ))

There is a common factor of r^2r2 on the right:

2rsin(theta) = r^2{-2cos^2(theta) + 3cos(theta)sin(theta))}2rsin(θ)=r2{2cos2(θ)+3cos(θ)sin(θ))}

Flip things a bit:

r^2{3cos(theta)sin(theta))-2cos^2(theta)} = 2rsin(theta)r2{3cos(θ)sin(θ))2cos2(θ)}=2rsin(θ)

Remove a common r:

r{3cos(theta)sin(theta))-2cos^2(theta)} = 2sin(theta)r{3cos(θ)sin(θ))2cos2(θ)}=2sin(θ)

Divide by everything in the {}s:

r = (2sin(theta))/(3cos(theta)sin(theta)-2cos^2(theta))r=2sin(θ)3cos(θ)sin(θ)2cos2(θ)

There you have r(theta)r(θ)