2rsin(theta) = -2(rcos(theta))^2 + 3(rcos(theta))(rsin(theta))2rsin(θ)=−2(rcos(θ))2+3(rcos(θ))(rsin(θ))
There is a common factor of r^2r2 on the right:
2rsin(theta) = r^2{-2cos^2(theta) + 3cos(theta)sin(theta))}2rsin(θ)=r2{−2cos2(θ)+3cos(θ)sin(θ))}
Flip things a bit:
r^2{3cos(theta)sin(theta))-2cos^2(theta)} = 2rsin(theta)r2{3cos(θ)sin(θ))−2cos2(θ)}=2rsin(θ)
Remove a common r:
r{3cos(theta)sin(theta))-2cos^2(theta)} = 2sin(theta)r{3cos(θ)sin(θ))−2cos2(θ)}=2sin(θ)
Divide by everything in the {}s:
r = (2sin(theta))/(3cos(theta)sin(theta)-2cos^2(theta))r=2sin(θ)3cos(θ)sin(θ)−2cos2(θ)
There you have r(theta)r(θ)