3=(7x-5y)^2 - y3=(7x−5y)2−y ...............(Given equation)
Put x=rcostheta x=rcosθ and y=rsinthetay=rsinθ ; we get :-
rArr3=(7rcostheta-5rsintheta)^2-rsintheta⇒3=(7rcosθ−5rsinθ)2−rsinθ
rArr3=49r^2cos^2theta+25r^2sin^2theta-70r^2costheta.sintheta-rsintheta⇒3=49r2cos2θ+25r2sin2θ−70r2cosθ.sinθ−rsinθ
rArr3=24r^2cos^2theta+(25r^2cos^2theta+25r^2sin^2theta)-70r^2costheta.sintheta-rsintheta⇒3=24r2cos2θ+(25r2cos2θ+25r2sin2θ)−70r2cosθ.sinθ−rsinθ
rArr3=24r^2cos^2theta+25r^2-70r^2costheta.sintheta-rsintheta⇒3=24r2cos2θ+25r2−70r2cosθ.sinθ−rsinθ
:.25r^2+24r^2cos^2theta-70r^2costheta.sintheta-rsintheta-3=0
is the Polar form