How do you convert 3=(7x-5y)^2-y3=(7x5y)2y into polar form?

1 Answer
Apr 23, 2018

Put x=rcostheta x=rcosθ and y=rsinthetay=rsinθ

Explanation:

3=(7x-5y)^2 - y3=(7x5y)2y ...............(Given equation)

Put x=rcostheta x=rcosθ and y=rsinthetay=rsinθ ; we get :-

rArr3=(7rcostheta-5rsintheta)^2-rsintheta3=(7rcosθ5rsinθ)2rsinθ

rArr3=49r^2cos^2theta+25r^2sin^2theta-70r^2costheta.sintheta-rsintheta3=49r2cos2θ+25r2sin2θ70r2cosθ.sinθrsinθ

rArr3=24r^2cos^2theta+(25r^2cos^2theta+25r^2sin^2theta)-70r^2costheta.sintheta-rsintheta3=24r2cos2θ+(25r2cos2θ+25r2sin2θ)70r2cosθ.sinθrsinθ

rArr3=24r^2cos^2theta+25r^2-70r^2costheta.sintheta-rsintheta3=24r2cos2θ+25r270r2cosθ.sinθrsinθ

:.25r^2+24r^2cos^2theta-70r^2costheta.sintheta-rsintheta-3=0

is the Polar form