-3=(x-2y)(x-y)−3=(x−2y)(x−y) represents a hyperbola having asymptotes
x = 2y and x = y#
Use conversion formula (x, y)= r (cos theta, sin theta )(x,y)=r(cosθ,sinθ).
The polar form is
3= ((-cos^2theta+3sin theta cos theta -4 sin^2theta)/r^23=(−cos2θ+3sinθcosθ−4sin2θr2
=-(cos theta - 2 sin theta)(cos theta - sin theta))/r^2=−(cosθ−2sinθ)(cosθ−sinθ))r2
Explicitly,
r = 1/3sqrt((cos theta-sin theta)(2 sin theta - cos theta))r=13√(cosθ−sinθ)(2sinθ−cosθ)
The asymptotes are now obtained using r = 0 at the ( meet of the
asymptotes ) center..
So, they are ( for pairs of opposite directions ) theta = pi/4, 5/4pi θ=π4,54π
and theta = pi+tan^(-1)(1/2), pi + tan^(-1)(1/2)θ=π+tan−1(12),π+tan−1(12)
Note that thetaθ for the hyperbola in (tan^(-1)(1/2), pi/4)∈(tan−1(12),π4) and
(pi+tan^(-1)(1/2), 5/4pi)(π+tan−1(12),54π), for the respective branches, in Q_1 and Q_3Q1andQ3.
graph{(x-y)(x-2y)+3=0 [-40, 40, -20, 20]}