How do you convert -3y= 2x^2+4xy 3y=2x2+4xy into a polar equation?

1 Answer
Dec 6, 2016

r = -3/2(tan theta sec theta)/(1-2 tan theta)r=32tanθsecθ12tanθ, representing a hyperbola. Graph is inserted.

Explanation:

The conversion formula is (x, y) = r (cos theta, sin theta)#

After conversion,

-3sin theta = 2rcos theta (cos theta + 2 sin theta)3sinθ=2rcosθ(cosθ+2sinθ). Explicitly,

r=-3/2tan theta/(cos theta+2 sin thetar=32tanθcosθ+2sinθ

== -3/2(tan theta sec theta)/(1-2 tan theta==32tanθsecθ12tanθ.
graph{3y+2x^2+4xy=0 [-5.53, 5.53, -2.765, 2.765]}