How do you convert 4=(5x-3)^2+(y-5)^24=(5x3)2+(y5)2 into polar form?

1 Answer
Feb 12, 2018

(25cos^2theta+sin^2theta)r^2-(30costheta+10sintheta)r+30=0(25cos2θ+sin2θ)r2(30cosθ+10sinθ)r+30=0 is the polar form

Explanation:

Given:
4=(5x-3)^2+(y-5)^24=(5x3)2+(y5)2
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
Thus,
4=(5rcostheta-3)^2+(rsintheta-5)^24=(5rcosθ3)2+(rsinθ5)2
4=25r^2cos^2theta-30rcostheta+9+r^2sin^2theta-10rsintheta+254=25r2cos2θ30rcosθ+9+r2sin2θ10rsinθ+25
(25cos^2theta+sin^2theta)r^2-(30costheta+10sintheta)r+9+25-4=0(25cos2θ+sin2θ)r2(30cosθ+10sinθ)r+9+254=0
(25cos^2theta+sin^2theta)r^2-(30costheta+10sintheta)r+30=0(25cos2θ+sin2θ)r2(30cosθ+10sinθ)r+30=0 is the polar form