How do you convert 4=(x+8)^2+(y+2)^2 into polar form?

1 Answer
Jan 6, 2017

r^2+4r(costheta+sintheta)+64=0

Explanation:

The relation between polar coordinates (r,theta) and corresponding Cartesian coordinates (x,y) is given by

x=rcostheta, y=rsintheta and r^2=x^2+y^2.

Hence, 4=(x+8)^2+(y+2)^2 can be written as

4=(rcostheta+8)^2+(rsintheta+2)^2

or r^2cos^2theta+16rcostheta+64+r^2sin^2theta+4rsintheta+4=4

or r^2(cos^2theta+sin^2theta)+16rcostheta+4rsintheta+64=0

or r^2+4r(costheta+sintheta)+64=0