How do you convert 4=(x+8)^2+(y-5)^24=(x+8)2+(y5)2 into polar form?

1 Answer
Mar 20, 2016

Set:

x=rcosθ

y=rsinθ

Answer is:

r^2+r*(16cosθ-10sinθ)+85=0

Explanation:

According to the geometry of this picture:

![http://mathinsight.org/](useruploads.socratic.org)

Set:

x=rcosθ

y=rsinθ

Substitute into the equation:

4=(x+8)^2+(y-5)^2

4=(rcosθ+8)^2+(rsinθ-5)^2

4=color(red)(r^2cos^2θ)+16*rcosθ+color(green)(64)+color(red)(r^2sin^2θ)-10*rsinθ+color(green)(25)

color(purple)(4)=r^2*color(blue)((cos^2θ+sin^2θ))+16*rcosθ-10*rsinθ+color(purple)(89)

0=r^2*1+color(red)(16*rcosθ-10*rsinθ)+85

r^2+r*(16cosθ-10sinθ)+85=0