The conversion from Rectangular to Polar:
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
Substitute for xx and yy and solve for rr:
4(rsintheta)+2= (3(rcostheta)+4)^2+(2(rsintheta)-1)^24(rsinθ)+2=(3(rcosθ)+4)2+(2(rsinθ)−1)2
4rsintheta+2= (3rcostheta+4)^2+(2rsintheta-1)^24rsinθ+2=(3rcosθ+4)2+(2rsinθ−1)2
4rsintheta+2= 9r^2cos^2theta+24rcostheta+16+4r^2sin^2theta-4rsintheta+14rsinθ+2=9r2cos2θ+24rcosθ+16+4r2sin2θ−4rsinθ+1
9r^2cos^2theta+24rcostheta+4r^2sin^2theta-8rsintheta+15=09r2cos2θ+24rcosθ+4r2sin2θ−8rsinθ+15=0
r(9rcos^2theta+24costheta+4rsin^2theta-8sintheta)=-15r(9rcos2θ+24cosθ+4rsin2θ−8sinθ)=−15
At this point either rr is equal to -15−15 or (9rcos^2theta+24costheta+4rsin^2theta-8sintheta)=-15(9rcos2θ+24cosθ+4rsin2θ−8sinθ)=−15
Let's solve the second:
9rcos^2theta+4rsin^2theta=8sintheta-24costheta-159rcos2θ+4rsin2θ=8sinθ−24cosθ−15
r(9cos^2theta+4sin^2theta)=8sintheta-24costheta-15r(9cos2θ+4sin2θ)=8sinθ−24cosθ−15
r=(8sintheta-24costheta-15)/(9cos^2theta+4sin^2theta)r=8sinθ−24cosθ−159cos2θ+4sin2θ