How do you convert (-5,0) (5,0) to polar form?

1 Answer
Dec 15, 2017

(5,pi)(5,π)

Explanation:

Using:

x=rcosthetax=rcosθ

y=rsinthetay=rsinθ

theta=arctan(y/x)θ=arctan(yx)

From example:

-5=rcosthetacolor(white)(88)[1]5=rcosθ88[1]

0=rsinthetacolor(white)(8888)[2]0=rsinθ8888[2]

Squaring [1] and [2]:

25=r^2cos^2theta25=r2cos2θ

0=r^2sin^2theta0=r2sin2θ

Adding [1] and [2]:

25=r^2cos^2theta+r^2sin^2theta25=r2cos2θ+r2sin2θ

Factor:

25=r^2(cos^2theta+sin^2theta)25=r2(cos2θ+sin2θ)

25=r^2=> r=+-525=r2r=±5 ( use r=5r=5 )

For r=5r=5:

y=0=5sintheta=>sintheta=0y=0=5sinθsinθ=0

x=-5=5costheta=>costheta=-1x=5=5cosθcosθ=1

theta=arctan(sintheta/costheta)=0/-1= , piθ=arctan(sinθcosθ)=01=,π

Polar coordinates:

(5,pi)(5,π)