Using:
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
theta=arctan(y/x)θ=arctan(yx)
From example:
-5=rcosthetacolor(white)(88)[1]−5=rcosθ88[1]
0=rsinthetacolor(white)(8888)[2]0=rsinθ8888[2]
Squaring [1] and [2]:
25=r^2cos^2theta25=r2cos2θ
0=r^2sin^2theta0=r2sin2θ
Adding [1] and [2]:
25=r^2cos^2theta+r^2sin^2theta25=r2cos2θ+r2sin2θ
Factor:
25=r^2(cos^2theta+sin^2theta)25=r2(cos2θ+sin2θ)
25=r^2=> r=+-525=r2⇒r=±5 ( use r=5r=5 )
For r=5r=5:
y=0=5sintheta=>sintheta=0y=0=5sinθ⇒sinθ=0
x=-5=5costheta=>costheta=-1x=−5=5cosθ⇒cosθ=−1
theta=arctan(sintheta/costheta)=0/-1= , piθ=arctan(sinθcosθ)=0−1=,π
Polar coordinates:
(5,pi)(5,π)