How do you convert 5y= -3x^2-2x 5y=3x22x into a polar equation?

1 Answer
Mar 6, 2017

r=-1/3sectheta(5tantheta-2)r=13secθ(5tanθ2)

Explanation:

for Cartesian to /from Polar form we use teh eqns.

r^2=x^2+y^2r2=x2+y2

x=rcosthetax=rcosθ

y=rsinthetay=rsinθ

5y=-3x^2-2x5y=3x22x

becomes;
5rsintheta=-3(rcostheta)^2-2rcostheta5rsinθ=3(rcosθ)22rcosθ

5cancel(r)sintheta=-3cancel(r^2)^rcos^2theta-2cancel(r)costheta

5sintheta=-3rcos^2theta-2costheta

3rcos^2theta=-5sintheta-2costheta

r=(-5sintheta-2costheta)/(3cos^2theta)

r=(-5sintheta)/(3cos^2theta) -(2costheta)/(3cos^2theta)

r=-5/3tanthetasectheta-2/3sectheta

r=-1/3sectheta(5tantheta-2)