How do you convert [-6,3pi/2][6,3π2] to rectangular form?

1 Answer
Jul 10, 2016

Rectangular form is (0,6)(0,6)

Explanation:

Polar coordinates are given as follows: (r, theta)(r,θ).

From the given problem, r=-6, theta=(3pi)/2r=6,θ=3π2

We can use the following formulas to get our x and y values:
x = rcostheta, y=rsinthetax=rcosθ,y=rsinθ

x = rcostheta = -6cos(3pi)/2 = -6 * 0 = 0x=rcosθ=6cos(3π)2=60=0

y = rsintheta = -6sin(3pi)/2 = -6 * -1 = 6y=rsinθ=6sin(3π)2=61=6

Therefore, our coordinate is (0,6)(0,6)