How do you convert 8=(5x-y)^2+2y8=(5xy)2+2y into polar form?

1 Answer
Aug 6, 2018

8 r^2 - 2 r sin theta - ( 5 cos theta - sin theta ) = 08r22rsinθ(5cosθsinθ)=0.

Explanation:

Conversion formulas:

( x, y ) = r ( cos theta,sin theta ), r = sqrt ( x^2 + y^2 ) >= 0(x,y)=r(cosθ,sinθ),r=x2+y20

8 = ( 5 x - y )^2 + 2y8=(5xy)2+2y converts to

8 = 1/r^2 ( 5 cos theta - sin theta ) + 2/r sin theta8=1r2(5cosθsinθ)+2rsinθ, giving

8 r^2 - 2 r sin theta - ( 5 cos theta - sin theta ) = 08r22rsinθ(5cosθsinθ)=0.

See this parabola.
graph{(5x-y)^2+2y-8=0}