How do you convert 9=(x-3)^2+(2y-9)^29=(x3)2+(2y9)2 into polar form?

1 Answer
May 3, 2018

The conversion from Rectangular to Polar:
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ

Substitute for xx and yy:
9=(rcostheta-3)^2+(2rsintheta-9)^29=(rcosθ3)2+(2rsinθ9)2

r^2cos^2theta-6rcostheta+9+4r^2sin^2theta-36sin^2theta+81=9r2cos2θ6rcosθ+9+4r2sin2θ36sin2θ+81=9

r^2cos^2theta-6rcostheta+4r^2sin^2theta-36rsintheta=-81r2cos2θ6rcosθ+4r2sin2θ36rsinθ=81

r(rcos^2theta-6costheta+4rsin^2theta-36sintheta)=-81r(rcos2θ6cosθ+4rsin2θ36sinθ)=81

r=-81r=81

Or the more meaningful solution:

rcos^2theta-6costheta+4rsin^2theta-36sintheta=-81rcos2θ6cosθ+4rsin2θ36sinθ=81

rcos^2theta+4rsin^2theta=-81+6costheta+36sinthetarcos2θ+4rsin2θ=81+6cosθ+36sinθ

r(cos^2theta+4sin^2theta)=-81+6costheta+36sinthetar(cos2θ+4sin2θ)=81+6cosθ+36sinθ

r=(-81+6costheta+36sintheta)/(cos^2theta+4sin^2theta)r=81+6cosθ+36sinθcos2θ+4sin2θ