The conversion from Rectangular to Polar:
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
Substitute for xx and yy:
9=(rcostheta-3)^2+(2rsintheta-9)^29=(rcosθ−3)2+(2rsinθ−9)2
r^2cos^2theta-6rcostheta+9+4r^2sin^2theta-36sin^2theta+81=9r2cos2θ−6rcosθ+9+4r2sin2θ−36sin2θ+81=9
r^2cos^2theta-6rcostheta+4r^2sin^2theta-36rsintheta=-81r2cos2θ−6rcosθ+4r2sin2θ−36rsinθ=−81
r(rcos^2theta-6costheta+4rsin^2theta-36sintheta)=-81r(rcos2θ−6cosθ+4rsin2θ−36sinθ)=−81
r=-81r=−81
Or the more meaningful solution:
rcos^2theta-6costheta+4rsin^2theta-36sintheta=-81rcos2θ−6cosθ+4rsin2θ−36sinθ=−81
rcos^2theta+4rsin^2theta=-81+6costheta+36sinthetarcos2θ+4rsin2θ=−81+6cosθ+36sinθ
r(cos^2theta+4sin^2theta)=-81+6costheta+36sinthetar(cos2θ+4sin2θ)=−81+6cosθ+36sinθ
r=(-81+6costheta+36sintheta)/(cos^2theta+4sin^2theta)r=−81+6cosθ+36sinθcos2θ+4sin2θ