How do you convert 9=(x+3)^2+(y+8)^2 into polar form?

1 Answer
May 22, 2016

9=(x+3)^2+(y+8)^2 in polar form can be written as

r^2+2r(3costheta+8sintheta)+64=0

Explanation:

A Cartesian point (x,y) in polar form is (r,theta), where

x=rcostheta and y=rsintheta and hence

x^2+y^2=r^2cos^2theta+r^2sin^2theta=r^2

Hence 9=(x+3)^2+(y+8)^2 can be written as

(rcostheta+3)^2+(rsintheta+8)^2=9

or r^2cos^2theta+6rcostheta+9+r^2sin^2theta+16rsintheta+64=9

or r^2+r(6costheta+16sintheta)+64=0

or r^2+2r(3costheta+8sintheta)+64=0