How do you convert r=1/(1-cosx)r=11cosx into rectangular form?

1 Answer
Apr 22, 2018

The equation is y^2=2x+1y2=2x+1

Explanation:

Apply the following to convert from polar coordinates (r,theta)(r,θ) to rectangular coordinates (x,y)(x,y) :

{(x=rcostheta),(y=rsintheta),(x^2+y^2=r^2), (theta=arctan(y/x)):}

Therefore,

r=1/(1-costheta)

r(1-costheta)=1

r-rcostheta=1

sqrt(x^2+y^2)-x=1

sqrt(x^2+y^2)=1+x

Squaring both sides

x^2+y^2=x^2+2x+1

y^2=2x+1

graph{y^2-2x-1=0 [-8.89, 8.89, -4.444, 4.445]}