How do you convert (r-1)^2= - sin theta costheta +cos^2theta(r1)2=sinθcosθ+cos2θ to Cartesian form?

2 Answers
Dec 1, 2016

We know the relations

x= rcostheta , y =rsintheta and r^2 = x^2+y^2x=rcosθ,y=rsinθandr2=x2+y2

where (x,y) and (r,theta)(x,y)and(r,θ) respectively represent the coordinates of same point in cartesian and in polar form.

Given equation

(r-1)^2=-sinthetacostheta+cos^2theta(r1)2=sinθcosθ+cos2θ

=>r^2(r-1)^2=-rsintheta* rcostheta+r^2cos^2thetar2(r1)2=rsinθrcosθ+r2cos2θ

=>(r^2-r)^2=-rsintheta* rcostheta+r^2cos^2theta(r2r)2=rsinθrcosθ+r2cos2θ

=>(x^2+y^2-sqrt(x^2+y^2))^2=-y* x+x^2(x2+y2x2+y2)2=yx+x2

=>(x^2+y^2-sqrt(x^2+y^2))^2=x^2-xy(x2+y2x2+y2)2=x2xy

This equation represents the cartesian form of the given polar equation.

Dec 1, 2016

(x^2+y^2)(x^2+y^2-sqrt(x^2+y^2))+y(x+y)=0(x2+y2)(x2+y2x2+y2)+y(x+y)=0. Illustrative graph is inserted.

Explanation:

(r-1)^2=r^2-2r+1=-sin theta cos theta + cos^2 theta(r1)2=r22r+1=sinθcosθ+cos2θ. So,

r^2-2r=-sin theta cos theta -(1-cos^2theta)r22r=sinθcosθ(1cos2θ)

=-sin theta cos theta -sin^2theta =-(y(x+y))/r^2=sinθcosθsin2θ=y(x+y)r2. using

cos theta = x/r and sin theta = y/rcosθ=xrandsinθ=yr, where r = sqrt(x^2+y^2)r=x2+y2

Cross multiplying and using r=sqrt(x^2+y^2)r=x2+y2,

(x^2+y^2)(x^2+y^2-2sqrt(x^2+y^2))+y(x+y)=0(x2+y2)(x2+y22x2+y2)+y(x+y)=0

graph{(x^2+y^2)(x^2+y^2-2sqrt(x^2+y^2))+y(x+y)=0 [-5, 5, -2.5, 2.5]}