How do you convert (r-1)^2= - sin theta costheta +costheta(r1)2=sinθcosθ+cosθ to Cartesian form?

1 Answer
Nov 8, 2016

x^2+y^2-2sqrt(x^2+y^2)+1=-(xy)/(x^2+y^2)+x/sqrt(x^2+y^2)x2+y22x2+y2+1=xyx2+y2+xx2+y2

Explanation:

The relation between polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) is given by

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ and r^2=x^2+y^2r2=x2+y2

Hence, (r-1)^2=-sinthetacostheta+costheta(r1)2=sinθcosθ+cosθ

hArrr^2-2r+1=-sinthetacostheta+costhetar22r+1=sinθcosθ+cosθ

or x^2+y^2-2sqrt(x^2+y^2)+1=-(y/r*x/r)+x/rx2+y22x2+y2+1=(yrxr)+xr

or x^2+y^2-2sqrt(x^2+y^2)+1=-(xy)/(x^2+y^2)+x/sqrt(x^2+y^2)x2+y22x2+y2+1=xyx2+y2+xx2+y2