How do you convert (r+1)^2= - sin theta costheta +costheta(r+1)2=sinθcosθ+cosθ to Cartesian form?

1 Answer
Oct 3, 2016

We know the relations

x=rcostheta and y =rsinthetax=rcosθandy=rsinθ

where r and thetaθ are the polar coordinate of a point having rectangular coordinate (x,y)(x,y)
So r^2=x^2+y^2r2=x2+y2

Now the given relation is

(r+1)^2=-sinthetacostheta+costheta(r+1)2=sinθcosθ+cosθ

r^2(r+1)^2=-(rsintheta)(rcostheta)+r*rcosthetar2(r+1)2=(rsinθ)(rcosθ)+rrcosθ
=>r^4+2r^3+r^2=-yx+rxr4+2r3+r2=yx+rx

=>(x^2+y^2)^2+2(x^2+y^2)^(3/2)+(x^2+y^2)=x(x^2+y^2)^(1/2)-xy(x2+y2)2+2(x2+y2)32+(x2+y2)=x(x2+y2)12xy

This is the rectangular form of the given polar equation.