How do you convert (r+1)^2= - sin theta costheta (r+1)2=sinθcosθ to Cartesian form?

1 Answer
May 25, 2017

(x^2+y^2)^2+2(x^2+y^2)^(3/2)+x^2+y^2+xy=0(x2+y2)2+2(x2+y2)32+x2+y2+xy=0

Explanation:

The relation between polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) is given by

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ and x^2+y^2=r^2x2+y2=r2

Hence we can write (r+1)^2=-sinthetacostheta(r+1)2=sinθcosθ in Cartesian form as

x^2+y^2+2sqrt(x^2+y^2)+1=-y/rxx x/rx2+y2+2x2+y2+1=yr×xr

or x^2+y^2+2sqrt(x^2+y^2)+1=-(xy)/(x^2+y^2)x2+y2+2x2+y2+1=xyx2+y2

or (x^2+y^2)^2+2(x^2+y^2)^(3/2)+x^2+y^2+xy=0(x2+y2)2+2(x2+y2)32+x2+y2+xy=0