How do you convert (r+1)^2= theta + sectheta (r+1)2=θ+secθ to Cartesian form?

1 Answer
Jun 29, 2016

x/y=tan[x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1]xy=tan[x2+y2+x2+y2(21x)+1]

Explanation:

When we convert polar coordinates (r,theta)(r,θ) to Cartesian coordinates, the relation is x=rcosthetax=rcosθ, y=rsinthetay=rsinθ and hence r^2=x^2+y^2r2=x2+y2 and theta=tan^(-1)(x/y)θ=tan1(xy).

Hence (r+1)^2=theta+sectheta(r+1)2=θ+secθ can be written as

r^2+2r+1=theta+secthetar2+2r+1=θ+secθ or

x^2+y^2+2sqrt(x^2+y^2)+1=tan(-1)(x/y)+sqrt(x^2+y^2)/xx2+y2+2x2+y2+1=tan(1)(xy)+x2+y2x or

x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1=tan(-1)(x/y)x2+y2+x2+y2(21x)+1=tan(1)(xy) or

x/y=tan[x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1]xy=tan[x2+y2+x2+y2(21x)+1]