How do you convert r=100/(3-2costheta)r=10032cosθ into cartesian form?

1 Answer
Aug 17, 2016

2491x^2-9y^2-10000x+10000=02491x29y210000x+10000=0

Explanation:

The given polar equation is in the form

(a(1-e^2))/r=1-scos thetaa(1e2)r=1scosθ that represents an ellipse with

eccentricity e=2/3e=23 ans semi major axis a = 60..

Use the conversion formula

r(cos theta, sin theta)=(x, y)r(cosθ,sinθ)=(x,y) that gives

r =sqrt(x^2+y^2) and cos theta = x/rr=x2+y2andcosθ=xr.

Substituting and rearranging,

3(sqrt(x^2+y^2))=50(2-x)3(x2+y2)=50(2x). Squaring and rearranging,

,2491x^2-9y^2-10000x+10000=02491x29y210000x+10000=0