How do you convert r = 2 / (1+sin(theta))r=21+sin(θ) into rectangular form?

1 Answer
Apr 14, 2018

The rectangular equation is y=-x^2/4+1y=x24+1.

Explanation:

r=2/(1+sintheta)r=21+sinθ

r=2/(1+sintheta)color(red)(*(1-sintheta)/(1-sintheta))r=21+sinθ1sinθ1sinθ

r=(2-2sintheta)/(1-sin^2theta)r=22sinθ1sin2θ

r=(2-2sintheta)/cos^2thetar=22sinθcos2θ

r^2=(2r-2rsintheta)/cos^2thetar2=2r2rsinθcos2θ

r^2cos^2theta=2r-2rsinthetar2cos2θ=2r2rsinθ

(rcostheta)^2=2r-2rsintheta(rcosθ)2=2r2rsinθ

Using the substitutions y=rsinthetay=rsinθ and x=rcosthetax=rcosθ and r=sqrt(x^2+y^2)r=x2+y2:

x^2=2sqrt(x^2+y^2)-2yx2=2x2+y22y

x^2/2+y=sqrt(x^2+y^2)x22+y=x2+y2

x^4/4+yx^2+y^2=x^2+y^2x44+yx2+y2=x2+y2

x^4/4+yx^2=x^2x44+yx2=x2

x^2(x^2/4+y)=x^2x2(x24+y)=x2

x^2/4+y=1x24+y=1

y=-x^2/4+1y=x24+1

That's the equation; it's a parabola. Here's what it looks like:

graph{-x^2/4+1 [-10, 10, -5, 5]}