r=2/(1+sintheta)r=21+sinθ
r=2/(1+sintheta)color(red)(*(1-sintheta)/(1-sintheta))r=21+sinθ⋅1−sinθ1−sinθ
r=(2-2sintheta)/(1-sin^2theta)r=2−2sinθ1−sin2θ
r=(2-2sintheta)/cos^2thetar=2−2sinθcos2θ
r^2=(2r-2rsintheta)/cos^2thetar2=2r−2rsinθcos2θ
r^2cos^2theta=2r-2rsinthetar2cos2θ=2r−2rsinθ
(rcostheta)^2=2r-2rsintheta(rcosθ)2=2r−2rsinθ
Using the substitutions y=rsinthetay=rsinθ and x=rcosthetax=rcosθ and r=sqrt(x^2+y^2)r=√x2+y2:
x^2=2sqrt(x^2+y^2)-2yx2=2√x2+y2−2y
x^2/2+y=sqrt(x^2+y^2)x22+y=√x2+y2
x^4/4+yx^2+y^2=x^2+y^2x44+yx2+y2=x2+y2
x^4/4+yx^2=x^2x44+yx2=x2
x^2(x^2/4+y)=x^2x2(x24+y)=x2
x^2/4+y=1x24+y=1
y=-x^2/4+1y=−x24+1
That's the equation; it's a parabola. Here's what it looks like:
graph{-x^2/4+1 [-10, 10, -5, 5]}