How do you convert r=2(cos(theta))^2r=2(cos(θ))2 to rectangular form?

1 Answer
Dec 15, 2016

(x^2+y^2)^(3/2)=2x^2(x2+y2)32=2x2

Explanation:

Convert r=2(costheta)^2r=2(cosθ)2 to rectangular form.

costheta =x/rcosθ=xr

Substitute r=2(x/r)^2r=2(xr)2

r=(2x^2)/r^2r=2x2r2

Cross multiply

r^3=2x^2r3=2x2

Substitute r=sqrt(x^2+y^2)r=x2+y2

(sqrt(x^2+y^2))^3=(2x^2)(x2+y2)3=(2x2)

((x^2+y^2)^(1/2))^3=(2x^2)((x2+y2)12)3=(2x2)

(x^2+y^2)^(3/2)=2x^2(x2+y2)32=2x2