How do you convert r(2 - cosx) = 2 into cartesian form?

1 Answer
Jul 30, 2016

3x^2+4y^2-4x-4=0

Explanation:

The relation between Cartesian coordinates (x.y) and (r,theta) is given by x=rcostheta and y=rsintheta and r^2=x^2+y^2

Hence, r(2-costheta)=2 can be written as

2r-rcostheta=2 or

2sqrt(x^2+y^2)-x=2 or

2sqrt(x^2+y^2)=2+x and squaring

4(x^2+y^2)=(2+x)^2=4+4x+x^2 or

3x^2+4y^2-4x-4=0

graph{3x^2+4y^2-4x-4=0 [-1.708, 3.292, -1.3, 1.5]}