Polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) are related as
x=rcosthetax=rcosθ and y=rsinthetay=rsinθ, i.e. r^2=x^2+y^2r2=x2+y2 and tantheta=y/xtanθ=yx
Hence, r=25/(5-3cos(theta-30^o))r=255−3cos(θ−30o) can be written as
r(5-3cos(theta-30^o))=25r(5−3cos(θ−30o))=25
or r(5-3(costhetacos30^o +sinthetasin30^o))=25r(5−3(cosθcos30o+sinθsin30o))=25
or r(5-3(costhetaxxsqrt3/2 +sinthetaxx1/2))=25r(5−3(cosθ×√32+sinθ×12))=25
or 5r-(3sqrt3)/2rcostheta -1/2rsintheta=255r−3√32rcosθ−12rsinθ=25
or 5sqrt(x^2+y^2)-(3sqrt3)/2x -1/2y=255√x2+y2−3√32x−12y=25