How do you convert r=25/( 5-3cos(theta-30))r=2553cos(θ30) into rectangular form?

1 Answer
Oct 26, 2016

5sqrt(x^2+y^2)-(3sqrt3)/2x -1/2y=255x2+y2332x12y=25

Explanation:

Polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) are related as

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ, i.e. r^2=x^2+y^2r2=x2+y2 and tantheta=y/xtanθ=yx

Hence, r=25/(5-3cos(theta-30^o))r=2553cos(θ30o) can be written as

r(5-3cos(theta-30^o))=25r(53cos(θ30o))=25

or r(5-3(costhetacos30^o +sinthetasin30^o))=25r(53(cosθcos30o+sinθsin30o))=25

or r(5-3(costhetaxxsqrt3/2 +sinthetaxx1/2))=25r(53(cosθ×32+sinθ×12))=25

or 5r-(3sqrt3)/2rcostheta -1/2rsintheta=255r332rcosθ12rsinθ=25

or 5sqrt(x^2+y^2)-(3sqrt3)/2x -1/2y=255x2+y2332x12y=25