How do you convert r = 3 sec ( pi/3 - theta) into cartesian form?

1 Answer
Oct 12, 2016

Please see the explanation for the conversion process.

y = -sqrt(3)/3x + 2sqrt(3)

Explanation:

Multiply both sides of the equation by cos(pi/3 - theta) (because cos(A)sec(A) = 1):

rcos(pi/3 - theta) = 3

Use the identity cos(A - B) = cos(A)cos(B) + sin(A)sin(B):

r(cos(pi/3)cos(theta) + sin(pi/3)sin(theta)) = 3

We know the values for the sine and cosine of pi/3:

r(1/2cos(theta) + sqrt(3)/2sin(theta)) = 3

Distribute r:

1/2rcos(theta) + sqrt(3)/2rsin(theta) = 3

Substitute y for rsin(theta) and x for rcos(theta)

1/2x + sqrt(3)/2y = 3

sqrt(3)/2y = -1/2x + 3

y = -sqrt(3)/3x + 2sqrt(3)