How do you convert r = 3sin(theta)r=3sin(θ) into a cartesian equation?

1 Answer
Sep 22, 2015

Use r = sqrt(x^2+y^2)r=x2+y2 and sin(theta) = y / rsin(θ)=yr to get:

x^2+y^2 = 3yx2+y2=3y

Explanation:

r = sqrt(x^2+y^2)r=x2+y2 and sin(theta) = y / rsin(θ)=yr

So r = 3sin(theta)r=3sin(θ) becomes:

sqrt(x^2+y^2) = (3y)/sqrt(x^2+y^2)x2+y2=3yx2+y2

Multiply both sides by sqrt(x^2+y^2)x2+y2 to get:

x^2+y^2 = 3yx2+y2=3y

graph{x^2+y^2-3y=0 [-4.913, 5.087, -0.98, 4.02]}