From the diagram we can see that point P has polar coordinates
( r , theta ) and Cartesian coordinates (x,y).
And color(white)(88)x=rcos(theta) , y = rsin(theta)
(x,y) -> (rcos(theta), rsin(theta))
Also:
By Pythagoras' Theorem :
r^2=(rcostheta)^2+(rsintheta)^2
Since:
x=rcos(theta) and y = rsin(theta)
Then:
r^2=x^2+y^2 :. r=sqrt(x^2+y^2)
Using these ideas:
r=4/(1-cos(theta))
Substituting:
sqrt(x^2+y^2)=4/(1-cos(theta))
cos(theta)=x/r
sqrt(x^2+y^2)=4/(1-x/r)
sqrt(x^2+y^2)=4/(1-x/(sqrt(x^2+y^2))
Multiply by (1-x/(sqrt(x^2+y^2)))
sqrt(x^2+y^2)-(xsqrt(x^2+y^2))/(sqrt(x^2+y^2))=(4(1-x/(sqrt(x^2+y^2))))/(1-x/(sqrt(x^2+y^2))
sqrt(x^2+y^2)-(xcancel(sqrt(x^2+y^2)))/(cancel(sqrt(x^2+y^2)))=(4(cancel(1-x/(sqrt(x^2+y^2)))))/((cancel(1-x/((sqrt(x^2+y^2))))))
sqrt(x^2+y^2)-x=4
sqrt(x^2+y^2)=4+x
Squaring:
x^2+y^2=x^2+8x+16
y^2-8x-16=0