How do you convert r = 4 / (1 - cos theta) to rectangular form?

1 Answer
Feb 6, 2018

y^2-8x-16=0

Explanation:

enter image source here

From the diagram we can see that point P has polar coordinates
( r , theta ) and Cartesian coordinates (x,y).

And color(white)(88)x=rcos(theta) , y = rsin(theta)

(x,y) -> (rcos(theta), rsin(theta))

Also:

By Pythagoras' Theorem :

r^2=(rcostheta)^2+(rsintheta)^2

Since:

x=rcos(theta) and y = rsin(theta)

Then:

r^2=x^2+y^2 :. r=sqrt(x^2+y^2)

Using these ideas:

r=4/(1-cos(theta))

Substituting:

sqrt(x^2+y^2)=4/(1-cos(theta))

cos(theta)=x/r

sqrt(x^2+y^2)=4/(1-x/r)

sqrt(x^2+y^2)=4/(1-x/(sqrt(x^2+y^2))

Multiply by (1-x/(sqrt(x^2+y^2)))

sqrt(x^2+y^2)-(xsqrt(x^2+y^2))/(sqrt(x^2+y^2))=(4(1-x/(sqrt(x^2+y^2))))/(1-x/(sqrt(x^2+y^2))

sqrt(x^2+y^2)-(xcancel(sqrt(x^2+y^2)))/(cancel(sqrt(x^2+y^2)))=(4(cancel(1-x/(sqrt(x^2+y^2)))))/((cancel(1-x/((sqrt(x^2+y^2))))))

sqrt(x^2+y^2)-x=4

sqrt(x^2+y^2)=4+x

Squaring:

x^2+y^2=x^2+8x+16

y^2-8x-16=0