How do you convert r=4 theta - sin theta +cos^2thetar=4θsinθ+cos2θ to Cartesian form?

1 Answer
Oct 9, 2016

Here is 1 of the 3 equations:

(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0

Please see the explanation for the other two.

Explanation:

Let's begin by multiplying both sides of the equation by

r^3 = 4r²theta - r²sin(theta) + r²cos²(theta)

Because x = rcos(theta), we can replace r²cos²(theta) with :

r^3 = 4r²theta - r²sin(theta) + x²

Because y = rsin(theta) and r = sqrt(x² + y²), we can replace - r²sin(theta) with -ysqrt(x² + y²):

r^3 = 4r²theta - ysqrt(x² + y²) + x²

The 4r²theta term makes the one equation become 3 equations with 3 domain restrictions:

r^3 = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0

r^3 = 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0

r^3 = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0

Replace with (x² + y²)^(3/2)

(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0

(x² + y²)^(3/2)= 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0

(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0