Let's begin by multiplying both sides of the equation by r²
r^3 = 4r²theta - r²sin(theta) + r²cos²(theta)
Because x = rcos(theta), we can replace r²cos²(theta) with x²:
r^3 = 4r²theta - r²sin(theta) + x²
Because y = rsin(theta) and r = sqrt(x² + y²), we can replace - r²sin(theta) with -ysqrt(x² + y²):
r^3 = 4r²theta - ysqrt(x² + y²) + x²
The 4r²theta term makes the one equation become 3 equations with 3 domain restrictions:
r^3 = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0
r^3 = 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0
r^3 = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0
Replace r³ with (x² + y²)^(3/2)
(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0
(x² + y²)^(3/2)= 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0
(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0