How do you convert r=6/(2-cos(theta)) into cartesian form?

1 Answer
Nov 8, 2016

The cartesian form is 3x^2-12x+4y^2-36=0

Explanation:

The formulae used are r^2=x^2+y^2
and x=rcostheta and y=rsintheta

Rewring the polar form as r(2-costheta)=6
Replacing costheta=x/r
We get r(2-x/r)=6=>2r-x=6
=> 2r=x+6
replacing r
2sqrt(x^2+y^2)=x+6
Squaring both sides
4(x^2+y^2)=(x+6)^2
4x^2+4y^2=x^2+12x+36
3x^2-12x+4y^2-36=0
graph{3x^2-12x+4y^2-36=0 [-7.9, 7.9, -3.95, 3.95]}