How do you convert R=6/(2+cos(theta))R=62+cos(θ) into cartesian form?

1 Answer
Nov 28, 2017

3x^2+12x+4y^2-36=03x2+12x+4y236=0

Explanation:

r=6/(2+cos(theta))r=62+cos(θ)

2r+rcos(theta)=62r+rcos(θ)=6

For polar coordinates; rr is equal to sqrt(x^2+y^2)x2+y2 and rcos(theta)rcos(θ) is equal to xx in cartesian ones. Hence,

2sqrt(x^2+y^2)+x=62x2+y2+x=6

2sqrt(x^2+y^2)=6-x2x2+y2=6x

4*(x^2+y^2)=(6-x)^24(x2+y2)=(6x)2

4x^2+4y^2=x^2-12x+364x2+4y2=x212x+36

3x^2+12x+4y^2-36=03x2+12x+4y236=0