How do you convert r = 9 / (2 - cos(theta)) to rectangular form?

1 Answer
May 14, 2018

(x-3)^2/36+y^2/27=1

This is the standard ellipse form

Explanation:

Just a few things:
r^2=x^2+y^2
x=rcostheta
y=rcostheta

r = 9 / (2 - cos(theta))

1=9/(2r-rcostheta)

2r-rcostheta=9

2r= rcostheta+9

2r= x+9

(2r)^2= (x+9)^2

4r^2= x^2+18x+81

4x^2+4y^2= x^2+18x+81

3x^2-18x+4y^2=81

3x^2-18x+4y^2=81

3(x^2-6x+9)+4y^2= 108

3(x-3)^2+4y^2= 108

(x-3)^2/(1/3)+y^2/(1/4)= 108

(x-3)^2/36+y^2/27=1