How do you convert r = sec(θ + π/4) into cartesian form?

1 Answer
Jun 29, 2016

x-y=sqrt2

Explanation:

A polar coordinate (r,theta) in cartesian coordinates is (x,y) where x=rcostheta and y=rsintheta. It is apparent that r^2=x^2+y^2.

Now r=sec(theta+pi/4)=1/cos(theta+pi/4)=1/(costhetacos(pi/4)-sinthetasin(pi/4))=sqrt2/(costheta-sintheta)

(as sin(pi/4)=cos(pi/4)=1/sqrt2

Hence, rcostheta-rsintheta=sqrt2 or

x-y=sqrt2