How do you convert r=sec(theta - pi/6)r=sec(θπ6) into cartesian form?

1 Answer
Nov 23, 2016

sqrt3x+y=23x+y=2

Explanation:

Polar coordinates (r,theta)(r,θ) and Cartesian oordinates (x,y)(x,y) are related as

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ

Hence, r=sec(theta-pi/6)=1/cos(theta-pi/6)r=sec(θπ6)=1cos(θπ6)

or r=1/(costhetacos(pi/6)+sinthetasin(pi/6))r=1cosθcos(π6)+sinθsin(π6)

or r(costhetacos(pi/6)+sinthetasin(pi/6))=1r(cosθcos(π6)+sinθsin(π6))=1

or rcosthetaxxsqrt3/2+rsinthetaxx1/2=1rcosθ×32+rsinθ×12=1

or sqrt3x+y=23x+y=2