How do you convert the polar equation r=3/(1-sintheta)r=31sinθ into rectangular form?

1 Answer
Feb 2, 2017

The answer is y=(x^2-9)/6y=x296

Explanation:

To convert from polar coordinates (r, theta)(r,θ) to rectangular coordinates (x,y)(x,y), we use the following equations

x=rcosthetax=rcosθ

y=rsin thetay=rsinθ

x^2+y^2=r^2x2+y2=r2

Therefore,

r=3/(1-sintheta)r=31sinθ

r(1-sintheta)=3r(1sinθ)=3

r-rsintheta=3rrsinθ=3

r=3+rsinthetar=3+rsinθ

sqrt(x^2+y^2)=3+yx2+y2=3+y

x^2+y^2=(3+y)^2=9+6y+y^2x2+y2=(3+y)2=9+6y+y2

x^2=9+6yx2=9+6y

6y=x^2-96y=x29

y=(x^2-9)/6y=x296