How do you convert the rectangular equation y^2+(x-3)^2=9y2+(x3)2=9 into polar form?

1 Answer
Oct 4, 2016

r=6costhetar=6cosθ

Explanation:

The relation between rectangular Cartesian coordinates (x,y)(x,y) and polar coordinates (r,theta)(r,θ) is given by

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ and x^2+y^2=r^2x2+y2=r2

Hence y^2+(x-3)^2=9y2+(x3)2=9 can be rewritten as

y^2+x^2+9-6x=9y2+x2+96x=9

or y^2+x^2-6x=0y2+x26x=0

or r^2-6rcostheta=0r26rcosθ=0

or r^2=6rcosthetar2=6rcosθ

or r=6costhetar=6cosθ