How do you convert x^2 + y^2 - 2ax = 0x2+y22ax=0 to polar form?

2 Answers
Nov 7, 2016

tHe polar form is r-2acostheta=0r2acosθ=0

Explanation:

To convert a cartesian equation to a polar equation, we use the following.
x=rcosthetax=rcosθ and y=sinthetay=sinθ
x^2+y^2-2ax=0x2+y22ax=0 => r^2cos^2theta+r^2sin^2theta-2arcostheta=0r2cos2θ+r2sin2θ2arcosθ=0
Simplifying
r^2-2arcostheta=0r22arcosθ=0
r-2acostheta=0r2acosθ=0

Nov 7, 2016

r=2acosthetar=2acosθ

Explanation:

Using the pass equations

{(x=rcostheta),(y=rsintheta):}

r^2cos^2theta+r^2sin^2theta-2arcostheta=0 or

r(r-2acostheta)=0 so we have

r=0 which is a point at the origin of coordinates and

r=2acostheta