If (r,theta)(r,θ) is in polar form and (x,y)(x,y) in Cartesian form the relation between them is as follows:
x=rcosthetax=rcosθ, y=rsinthetay=rsinθ, r^2=x^2+y^2r2=x2+y2 and tantheta=y/xtanθ=yx
Hence, x+2y-4=0x+2y−4=0 can be written as
rcostheta+2rsintheta-4=0rcosθ+2rsinθ−4=0 or
r(costheta+2sintheta)=4r(cosθ+2sinθ)=4 or
r=4/(costheta+2sintheta)r=4cosθ+2sinθ .....(A)
Now let tan^(-1)2=alphatan−12=α or 2=tanalpha=sinalpha/cosalpha2=tanα=sinαcosα
Hence (A) becomes r=4/(costheta+(sinalpha/cosalpha)sintheta)r=4cosθ+(sinαcosα)sinθ
or r=4cosalpha/(costhetacosalpha+sinalphasintheta)r=4cosαcosθcosα+sinαsinθ or
r=4cosalpha/cos(theta-alpha)r=4cosαcos(θ−α)