How do you convert x+2y-4=0x+2y4=0 to polar form?

1 Answer
May 4, 2016

r=4cosalpha/cos(theta-alpha)r=4cosαcos(θα) where alpha=tan^(-1)2α=tan12

Explanation:

If (r,theta)(r,θ) is in polar form and (x,y)(x,y) in Cartesian form the relation between them is as follows:

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ, r^2=x^2+y^2r2=x2+y2 and tantheta=y/xtanθ=yx

Hence, x+2y-4=0x+2y4=0 can be written as

rcostheta+2rsintheta-4=0rcosθ+2rsinθ4=0 or

r(costheta+2sintheta)=4r(cosθ+2sinθ)=4 or

r=4/(costheta+2sintheta)r=4cosθ+2sinθ .....(A)

Now let tan^(-1)2=alphatan12=α or 2=tanalpha=sinalpha/cosalpha2=tanα=sinαcosα

Hence (A) becomes r=4/(costheta+(sinalpha/cosalpha)sintheta)r=4cosθ+(sinαcosα)sinθ

or r=4cosalpha/(costhetacosalpha+sinalphasintheta)r=4cosαcosθcosα+sinαsinθ or

r=4cosalpha/cos(theta-alpha)r=4cosαcos(θα)