How do you convert -xy=-x^2+4y^2 xy=x2+4y2 into a polar equation?

1 Answer
Mar 15, 2016

Substitute:

x=rcosθ
y=rsinθ

Polar equation is

-rcosθ*rsinθ=-(rcosθ)^2+4(rsinθ)^2

or, with some trigonometric identities:

10sin^2θ+sin2θ-2=0

Explanation:

![mathinsight.org](useruploads.socratic.org)

Therefore:

x=rcosθ

y=rsinθ

So, by substituting:

-xy=-x^2+4y^2

-rcosθ*rsinθ=-(rcosθ)^2+4(rsinθ)^2

-r^2cosθsinθ=-r^2cos^2θ+4r^2sin^2θ

Divide by r^2 since r>0

-cosθsinθ=-cos^2θ+4sin^2θ

Using trigonometric identities:

sin2θ=2sinθcosθ

sin^2θ+cos^2θ=1

We have:

-(sin2θ)/2=-(1-sin^2θ)+4sin^2θ

-(sin2θ)/2=-1+sin^2θ+4sin^2θ

-(sin2θ)/2=5sin^2θ-1

10sin^2θ+sin2θ-2=0